

A Level Biology Bridging Course

You are expected to do the following, and bring the relevant work to your first lesson with Mrs Hancock in September:

- 1. One page of "Cornell notes" for each of the 4 research activity topics.
- 2. Read through all of the "Pre-Knowledge Topics" sections, viewing the suggested websites/videos, and complete the suggested task for <u>two</u> of them (your choice which.)
- 3. Join my class on Seneca using the following class code, and I will set some sections to complete:

 03zn6et5sf

Transition Pack for A Level Biology

Get ready for A-level!

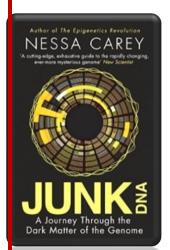
A guide to help you get ready for A-level Biology, including everything from topic guides to days out and online learning courses.


Commissioned by The PiXL Club Ltd. April 2018

© Copyright The PiXL Club Ltd, 2018

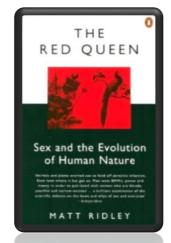
Please note: these resources are non-board specific. Please direct your students to the specifics of where this knowledge and skills most apply.

So you are considering A level Biology?


This pack contains a programme of activities and resources to prepare you to start A level Biology in September. It is aimed to be used after you complete your GCSE throughout the remainder of the summer term and over the summer holidays to ensure you are ready to start your course in September.

https://www.distance-education-academy.com/wp-content/uploads/2013/06/biology-a-level-course.jpg

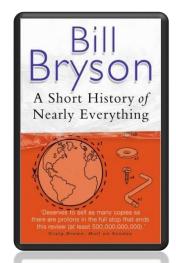
Book Recommendations

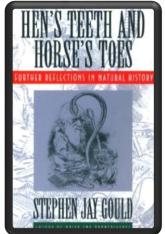

Kick back this summer with a good read. The books below are all popular science books and great for extending your understanding of Biology.

The Red Queen

Its all about sex. Or sexual selection at least. This book will really help your understanding of evolution and particularly the fascinating role of sex in evolution. Available at amazon.co.uk

Everything

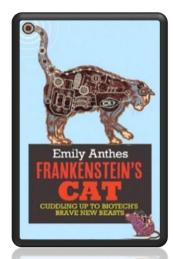



Junk DNA

Our DNA is so much more complex than you probably realize, this book will really deepen your understanding of all the work you will do on genetics. Available at amazon.co.uk

Studying Geography as well? Hen's Teeth and Horse's Toes

Stephen Jay Gould is a great evolution writer and this book discusses lots of fascinating stories about geology and evolution. Available at amazon.co.uk



ZLESHEN TYL CONFD

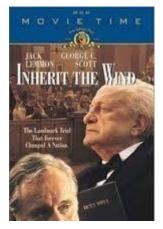
A Short History of Nearly

A whistle-stop tour through many aspects of history from the Big Bang to now. This is a really accessible read that will re-familiarise you with common concepts and introduce you to some of the more colourful characters from the history of science! Available at amazon.co.uk

An easy read..

Frankenstein's Cat

Discover how glow in the dark fish are made and more great biotechnology breakthroughs. Available at amazon.co.uk


Movie Recommendations

Everyone loves a good story and everyone loves some great science. Here are some of the picks of the best films based on real life scientists and discoveries. You wont find Jurassic Park on this list, we've looked back over the last 50 years to give you our top 5 films you might not have seen before. Great watching for a rainy day.

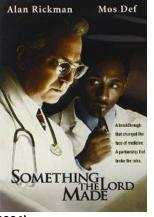
Inherit The Wind (1960) Great if you can find it. Based on a real life trial of a teacher accused of the crime of teaching Darwinian evolution in school in America. Does the debate rumble on

today?

Lorenzo's Oil (1992)

Based on a true story. A young child suffers from an autoimmune disease. The parents research and challenge doctors to develop a new cure for his disease.

Andromeda Strain (1971)


Science fiction by the great thriller writer Michael Cricthon (most famous for writing Jurassic Park). Humans begin dying when an alien microbe arrives on Earth.

Gorillas in the Mist (1988)

An absolute classic that retells the true story of the life and work of Dian Fossey and her work studying and protecting mountain gorillas from poachers and habitat loss. A tear jerker.

Something the Lord Made

(2004)

Professor Snape (the late great Alan Rickman) in a very different role. The film tells the story of the scientists at the cutting edge of early heart surgery as well as issues surrounding racism at the time.

There are some great TV series and box sets available too, you might want to check out: Blue Planet, Planet Earth I and II,, Icarus, Blackfish, The Ascent of Man, Catastrophe, Frozen Planet, Life Story, The Hunt and Monsoon.

Movie Recommendations

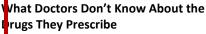
If you have 30 minutes to spare, here are some great presentations (and free!) from world leading scientists and researchers on a variety of topics. They provide some interesting answers and ask some thought-provoking questions. Use the link or scan the QR code to view:

A New Superweapon in the Fight Against Cancer

Available at:

http://www.ted.com/talks/paula hammon d a new superweapon in the fight agai nst cancer?language=en

Cancer is a very clever, adaptable disease. To defeat it, says medical researcher and educator Paula Hammond, we need a new and powerful mode of attack.



Why Bees are Disappearing Available at:

http://www.ted.com/talks/marla_spivak_why_bees_are_disappearing?language=en
Honeybees have thrived for 50 million
years, each colony 40 to 50,000 individuals
coordinated in amazing harmony. So why,
seven years ago, did colonies start dying
en-masse?

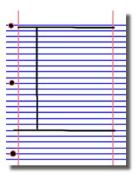
vailable at :

ttp://www.ted.com/talks/ben_goldacre_yhat_doctors_don_t_know_about_the_dr_lgs_they_prescribe?language=en_when a new drug gets tested, the results of the trials should be published for the rest of the medical world — except much of the time, negative or inconclusive findings go unreported, leaving doctors

nd researchers in the dark.

Growing New Organs

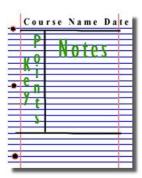
Available at:

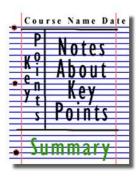

http://www.ted.com/talks/anthony atala growing organs engineering tissue?langu age=en

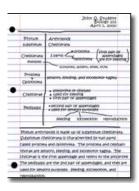
Anthony Atalla's state-of-the-art lab grows human organs — from muscles to blood vessels to bladders, and more.

Research Activities

Research, reading and note making are essential skills for A level Biology study. For the following task you are going to produce 'Cornell Notes' to summarise your reading.


1. Divide your page into sections like thisdate and


2. Write the name, three topic at the top of the page


3. Use the large box 4. notes. Leave identify a space between separate ideas. box Abbreviate where possible.

Review and to make the key points in the left hand

5. Write a summary of the main ideas in the bottom space

Images taken from http://coe.jmu.edu/learningtoolbox/cornellnotes.html

Research Activities

The Big Picture is an excellent publication from the Wellcome Trust. Along with the magazine, the company produces posters, videos and other resources aimed at students studying for GCSEs and A level.

For each of the following topics, you are going to use the resources to produce one page of Cornell style notes

Use the links or scan the QR code to take you to the resources.

BigPicture

Topic 1: The Cell

Available at: http://bigpictureeducation.com/cell

The cell is the building block of life. Each of us starts from a single cell, a zygote, and grows into a complex organism made of trillions of cells. In this issue, we explore what we know – and what we don't yet know – about the cells that are the basis of us all and how they reproduce, grow, move, communicate and die.

Topic 2: The Immune System Available at:

http://bigpictureeducation.com/immune

The immune system is what keeps us healthy in spite of the many organisms and substances that can do us harm. In this issue, we explore how our bodies are designed to prevent potentially harmful objects from getting inside and what happens when bacteria, viruses, fungi or other foreign organisms or substances breach these barriers.

Topic 3: Exercise, Energy and Movement Available at:

http://bigpictureeducation.com/exercise-energyand-movement

All living things move. Whether it's a plant growing towards the sun, bacteria swimming away from a toxin or you walking home, anything alive must move to survive. For humans though, movement is more than just survival – we move for fun, to compete and to be healthy. In this issue we look at the biological systems that keep us moving and consider some of the psychological, social and ethical aspects of exercise and sport.

Topic 4: Populations Available at:

http://bigpictureeducation.com/populations. What's the first thing that pops into your mind when you read the word population? Most likely it's the ever-increasing human population on earth. You're a member of that population, which is the term for all the members of a single species living together in the same location. The term population isn't just used to describe humans; it includes other animals, plants and microbes too. In this issue, we learn more about how populations grow, change and move, and why understanding them is so important.

Topic 4: Health and Climate Change Available at: http://bigpictureeducation.com/health-and-climate-change

The Earth's climate is changing. In fact, it has always been changing. What is different now is the speed of change and the main cause of change – human activities. This issue asks: What are the biggest threats to human health? Who will suffer as the climate changes? What can be done to minimise harm? And how do we cope with uncertainty?

Pre-Knowledge Topics

evel Biology will use your knowledge from GCSE and build on this to help you understand new and more demanding as. Complete the following tasks to make sure your knowledge is up to date and you are ready to start studying:

DNA and the Genetic Code

Ir living organisms nucleic acids (DNA and RNA) have important roles and functions related to their properties. The quence of bases in the DNA molecule determines the structure of proteins, including enzymes.

The double helix and its four bases store the information that is passed from generation to generation. The sequence of the be se pairs adenine, thymine, cytosine and guanine tell ribosomes in the cytoplasm how to construct amino acids into lypeptides and produce every characteristic we see. DNA can mutate leading to diseases including cancer and sometimes omalies in the genetic code are passed from parents to babies in diseases such as cystic fibrosis, or can be developed in born foetuses such as Downs Syndrome.

Read the information on these websites (you could make more Cornell notes if you wish):

tp://www.bbc.co.uk/education/guides/z36mmp3/revision http://www.s-cool.co.uk/a-level/biology/dna-and-geneticcode

d take a look at these videos: http://ed.ted.com/lessons/the-twisting-tale-of-dna-judith-

uck http://ed.ted.com/lessons/where-do-genes-come-from-carl-zimmer

Task:

Poduce a wall display to put up in your classroom in September. You might make a poster or do this using PowerPoint si nilar. Your display should use images, keywords and simple explanations to:

- Define gene, chromosome, DNA and base pair
- Describe the structure and function of DNA and RNA
- Explain how DNA is copied in the body
- Outline some of the problems that occur with DNA replication and what the consequences of this might be.

Evolution

ansfer of genetic information from one generation to the next can ensure continuity of species or lead to variation ithin a species and possible formation of new species. Reproductive isolation can lead to accumulation of different netic information in populations potentially leading to formation of new species (speciation). Sequencing projects have read the genomes of organisms ranging from microbes and plants, to humans. This allows the sequences of the oteins that derive from the genetic code to be predicted. Gene technologies allow study and alteration of gene function in order to better understand organism function and to design new industrial and medical processes. Read the formation on these websites (you could make more Cornell notes if you wish):

tp://www.bbc.co.uk/education/guides/z237hyc/revision/4 http://www.s-cool.co.uk/a-level/biology/evolution

nd take a look at these videos:

tp://ed.ted.com/lessons/how-to-sequence-the-human-genome-mark-j-kiel http://ed.ted.com/lessons/the-race-tos equence-the-human-genome-tien-nguyen

Task:

oduce a one page revision guide for an AS Biology student that recaps the key words and concepts in this topic. Your revision guide should: •

- Explain what a genome is
- Give examples of how this information has already been used to develop new treatments and technologies.

Describe speciation

Eiodiversity

The variety of life, both past and present, is extensive but the biochemical basis of life is similar for all living things. Eiodiversity refers to the variety and complexity of life and may be considered at different levels. Biodiversity can be neasured, for example, within a habitat or at the genetic level. Classification is a means of organising the variety of life based on relationships between organisms and is built around the concept of species. Originally classification systems were based on observable features but more recent approaches draw on a wider range of evidence to clarify relationships between organisms. Adaptations of organisms to their environments can be behavioural, physiological and anatomical. Adaptation and selection are major factors in evolution and make a significant contribution to the diversity of living organisms.

Read the information on these websites (you could make more Cornell notes if you wish): http://www.s-cool.co.uk/a-level/biology/ecological-concepts http://www.s-cool.co.uk/a-level/biology/ecological-concepts http://www.s-cool.co.uk/a-level/biology/ecological-concepts http://www.s-cool.co.uk/a-level/biology/ecological-concepts http://www.s-cool.co.uk/a-level/biology/ecological-concepts http://www.s-cool.co.uk/a-level/biology/elassification <a href="http://www.s-cool.co.uk/a-level/biology

And take a look at these videos:

http://ed.ted.com/lessons/why-is-biodiversity-so-important-kim-preshoff http://ed.ted.com/lessons/can-wildlife-adapt-toc imate-change-erin-eastwood

Task:

Vrite a persuasive letter to an MP, organisation or pressure group promoting conservation to maintain biodiversity.

- Define what is meant by species and classification
- Describe how species are classified
- Explain one way scientists can collect data about a habitat, giving an example
- Explain adaptation and how habitat change may pose a threat to niche species.

Exchange and Transport

C ganisms need to exchange substances selectively with their environment and this takes place at exchange surfaces. Factors such as size or metabolic rate affect the requirements of organisms and this gives rise to adaptations such as specialised exchange surfaces and mass transport systems. Substances are exchanged by passive or active transport acros exchange surfaces. The structure of the plasma membrane enables control of the passage of substances into and out of cells.

Read the information on these websites (you could make more Cornell notes if you wish):

htp://www.s-cool.co.uk/a-level/biology/gas-exchange

htp://www.s-cool.co.uk/a-level/biology/nutrition-and-digestion/revise-it/human-digestive-system

And take a look at these videos:

h tp://ed.ted.com/lessons/insights-into-cell-membranes-via-dish-detergent-ethan-perlstein

http://ed.ted.com/lessons/what-do-the-lungs-do-emma-bryce

Thsk:

C eate a poster or display to go in your classroom in September. Your poster should either: compare exchange surfaces in mammals and fish, or compare exchange surfaces in the lungs and the intestines. You could use a Venn diagram to details.

Your poster should:

- Describe diffusion, osmosis and active transport
- Explain why oxygen and glucose need to be absorbed and waste products removed
- Compare and contrast your chosen focus.

Cells

The cell is a unifying concept in biology, you will come across it many times during your two years of A level study. Prokaryotic and eukaryotic cells can be distinguished on the basis of their structure and ultrastructure. In complex multicellular organisms, cells are organised into tissues, tissues into organs and organs into systems. During the cell cycle genetic information is copied and passed to daughter cells. Daughter cells formed during mitosis have identical copies of genes while cells formed during meiosis are not genetically identical.

Read the information on these websites (you could make more Cornell notes if you wish):

htp://www.s-cool.co.uk/a-level/biology/cells-and-organelles

htp://www.bbc.co.uk/education/guides/zvjycdm/revision

And take a look at these videos:

htps://www.youtube.com/watch?v=gcTuQpuJyD8 https://www.youtube.com/watch?v=L0k-

enzoeOM https://www.youtube.com/watch?v=gCLmR9-YY7o

Tisk:

Produce a one page revision guide to share with your class in September summarising one of the following topics:
Cells and Cell Ultrastructure, Prokaryotes and Eukaryotes, or Mitosis and Meiosis. Whichever topic you choose, your revision guide should include:

- Key words and definitions
- Clearly labelled diagrams
- Short explanations of key ideas or processes.

B ological Molecules

B ological molecules are often polymers and are based on a small number of chemical elements. In living organisms carbohydrates, proteins, lipids, inorganic ions and water all have important roles and functions related to their properties DNA determines the structure of proteins, including enzymes. Enzymes catalyse the reactions that determine structures and functions from cellular to whole-organism level. Enzymes are proteins with a mechanism of action and other properties determined by their tertiary structure. ATP provides the immediate source of energy for biological processes.

Read the information on these websites (you could make more Cornell notes if you wish): http://www.s-cool.co.uk/a-level/biology/biological-molecules-and-enzymes http://www.bbc.co.uk/education/guides/zb739j6/revision

And take a look at these videos:

htps://www.youtube.com/watch?v=H8WJ2KENIK0

htp://ed.ted.com/lessons/activation-energy-kickstarting-chemical-reactions-vance-kite

Task:

Krabbe disease occurs when a person doesn't have a certain enzyme in their body. The disease effects the nervous stem. Write a letter to a GP or a sufferer to explain what an enzyme is.

Your poster should:

- Describe the structure of an enzyme
- Explain what enzymes do inside the body

cosystems

cosystems range in size from the very large to the very small. Biomass transfers through ecosystems and the efficiency of transfer through different trophic levels can be measured. Microorganisms play a key role in recycling chemical lements. Ecosystems are dynamic systems, usually moving from colonisation to climax communities in a process nown as succession. The dynamic equilibrium of populations is affected by a range of factors. Humans are part of the cological balance and their activities affect it both directly and indirectly. Effective management of the conflict etween human needs and conservation help to maintain sustainability of resources.

read the information on these websites (you could make more Cornell notes if you wish):

ttp://www.bbc.co.uk/education/guides/z7vqtfr/revision http://www.s-cool.co.uk/a-level/biology/ecological-oncepts

and take a look at these videos:

ttps://www.youtube.com/watch?v=jZKIHe2LDP8

https://www.youtube.com/watch?v=E8dkWQVFAoA

ask:

roduce a newspaper or magazine article about one ecosystem (e.g. the arctic, the Sahara, the rainforest, or omething closer to home like your local woodland, nature reserve or shore line). Your article should include:

Key words and definitions

Pictures or diagrams of your chosen ecosystem.

A description of the changes that have occurred in this ecosystem

An explanation of the threats and future changes that may further alter this ecosystem.

ontrol Systems

lomeostasis is the maintenance of a constant internal environment. Negative feedback helps maintain an optimal nternal state in the context of a dynamic equilibrium. Positive feedback also occurs. Stimuli, both internal and external, re detected leading to responses. The genome is regulated by a number of factors. Coordination may be chemical or lectrical in nature

ead the information on these websites (you could make more Cornell notes if you wish):

ttp://www.s-cool.co.uk/a-level/biology/homeostasis

ttp://www.bbc.co.uk/education/topics/z8kxpv4

and take a look at these videos:

ttps://www.youtube.com/watch?v=x4PPZCLnVkA

ttps://www.youtube.com/watch?v=x4PPZCLnVkA

ask:

roduce a poster to display in your classroom in September summarising one of the following topics: Temperature Control, Water and the Kidneys, Glucose, or The Liver.

Vhichever topic you choose, your poster or display should include:

ley words and definitions

learly labelled diagrams

hort explanations of key ideas or processes.

Energy for Biological Processes

Ir cellular respiration, glycolysis takes place in the cytoplasm and the remaining steps in the mitochondria. ATP synthesis is associated with the electron transfer chain in the membranes of mitochondria and chloroplasts in photosynthesis energy is transferred to ATP in the light-dependent stage and the ATP is utilised during synthesis in the light-ir dependent stage.

Read the information on these websites (you could make more Cornell notes if you wish):

htp://www.bbc.co.uk/education/guides/zcxrd2p/revision http://www.s-cool.co.uk/a-

level/biology/respiration

And take a look at these videos:

h tps://www.youtube.com/watch?v=00jbG cfGuQ

h tps://www.youtube.com/watch?v=2f7YwCtHcgk

Tisk:

Produce an A3 annotated information poster that illustrates the process of cellular respiration and summarises the key points.

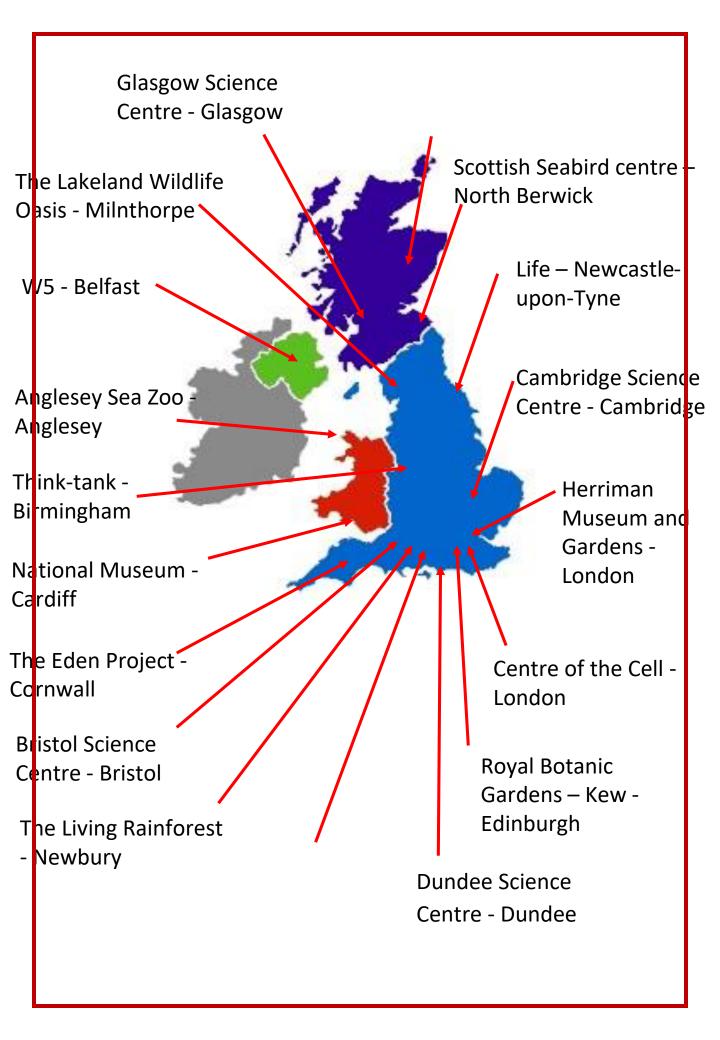
Your poster should include:

- Both text and images
- Be visually stimulating
- Key words and definitions
- Clearly labelled diagrams
- Short explanations of key ideas or processes.

Scientific and Investigative Skills

As part of your A level you will complete a practical assessment. This will require you to carry out a series of practical activities as well as planning how to do them, analysing the results and evaluating the methods. This will require you to: use a propriate apparatus to record a range of quantitative measurements (to include mass, time, volume, temperature, length and pH), use appropriate instrumentation to record quantitative measurements, such as a colorimeter or photometer, use laboratory glassware apparatus for a variety of experimental techniques to include serial dilutions, use of light microscope at high power and low power, including use of a graticule, produce scientific drawing from observation with annotations, use qualitative reagents to identify biological molecules, separate biological compounds using thin layer/paper chromatography or electrophoresis, safely and ethically use organisms, use microbiological aseptic techniques, including the use of agar plates and broth, safely use instruments for dissection of an animal organ, or plant organ, use sampling techniques in fieldwork.

Task:


Produce a glossary for the following key words:

accuracy, anomaly, calibration, causal link, chance, confounding variable, control experiment, control group, control variable, correlation, dependent variable, errors, evidence, fair test, hypothesis, independent, null hypothesis, precision, probability, protocol, random distribution, random error, raw data, reliability, systematic error, true value, validity, zero error,

Ideas for Day Trips

you are on holiday in the UK, or on a staycation at home, why not plan a day trip to one of these:

Oxford University **National Marine** Museum of Natural Aquarium - Plymouth History - Oxford

Ideas for Day Trips

If you are on holiday in the UK, or on a staycation at home, why not plan a day trip to one of these:

Remember there are also lots of zoos, wildlife and safari parks across the country, here are some you may not have heard of or considered:

Colchester Zoo, Cotswold Wildlife Park, Banham Zoo (Norfolk), Tropical Birdland (Leicestershire), Yorkshire Wildlife Park, Peak Wildlife Park, International Centre for Birds of Prey (York), Blackpool Zoo, Beale Park (Reading)

There are also hundreds of nature reserves (some of which are free) located all over the country including: RSPB sites at Lochwinnoch, Saltholme, Fairburn Ings, Old Moor, Conwy, Minsmere, Rainham Marshes, Pulborough Brooks, Radipole Lake, Newport Wetlands.

Wildlife Trust Reserves and others at Rutland Water, Pensthorpe, Insh Marshes, Attenborough Centre, Inversnaid, Skomer, Loch Garten, Donna Nook, Chapmans Well, Woodwalton Fen, London Wetland Centre, Martin Down and Woolston Eyes Reserve.

Many organisations also have opportunities for people to volunteer over the summer months, this might include working in a shop/café/visitor centre, helping with site maintenance or taking part in biological surveys. Not only is this great experience, it looks great on a job or UCAS application.

For opportunities keep an eye out in your local press, on social media, or look at the websites of organisations like the RSPB, Wildlife Trust, National Trust or Wildlife & Wetland Trust.

There are also probably lots of smaller organisations near you who would also appreciate any support you can give!

Science on Social Media

Science communication is essential in the modern world and all the big scientific companie, researchers and institutions have their own social media accounts. Here are some of our top tips to keep up to date with developing news or interesting stories:

A level Biology – A hub for GCSE and A level biology students @flagellum_bio

A Level Biology — alevelbiology.co.uk provides resources for AQA, OCR and Edexcel A-Level Biology.

@alevelbiologyuk

David Chalk –daily revision tips for AS and A2 Biology @teacherchalky1

Understand Biology – news stories relating to A level knowledge and understanding @a_level_biology

Sci Curious – feed from writer and Bethany Brookshire tweeting about good, bad and weird neuroscience @scicurious

Carl Zimmer – Science writer Carl blogs about the life sciences @carlzimmer

Virginia Hughes – science journalist and blogger for National Geographic, keep up to date with neuroscience, genetics and behaviour @virginiahughes

Maryn McKenna – science journalist who writes about antibiotic resistance @marynmck

Molecular Biology - latest news, research, books and journals in molecular biology, cell biology, genetics, stem cells, cancer and biotechnology @molecular

Find on Facebook:

Nature - the profile page for nature.com for news, features, research and events from Nature Publishing Group

Marine Conservation Institute – publishes the latest science to identify important marine ecosystems around the world.

National Geographic - since 1888, National Geographic has travelled the Earth, sharing its amazing stories in pictures and words.

Science News Magazine - Science covers important and emerging research in all fields of science.

BBC Science News - The latest BBC Science and Environment News: breaking news, analysis and debate on science and nature around the world.

Science Websites

These websites all offer an amazing collection of resources that you should use again and again throughout your course.

Probably the best website on

biology....

'Learn Genetics' from Utah

University has so much that is

appropriate passed on.

level for you and has lots of

or make glow in the dark jelly

http://learn.genetics.utah.edu

resources to sophila/

mice

n fish.

In the summer you will most

likely start to learn about

biodiversity and evolution.

Many Zoos have great pitched at an

websites, especially London

Zoo. Read about some of the interactive

case studies on conservation, explore, everything from why such as the Giant Pangolin, some people can taste bitter the only mammal with scales. berries to how we clone

https://www.zsl.org/conserva

tio

At GCSE you learnt how genetic

diseases are inherited. In this virtual fly

lab you get to breed fruit flies to

investigate how different features are

http://sciencecourseware.org/vcise/dro

DNA FROM THE BEGINNING

An animated primer of 75 experiments that made modern genetics.

CASSICAL GRAFTICS OF CASSICAL CONTROLLED CO

'DNA from the Beginning' is full of interactive animations that tell the story of DNA from its discovery through to advanced year 13 concepts. One to book mark! http://www.dnaftb.org/

Ok, so not a website, but a video you definitely want to watch. One of the first topics you will learn about is the amazing structure of the cell. This BBC film shows the fascinating workings of a cell... a touch more detailed than the "fried egg" model you might have seen.

http://www.dailymotion.com/video/x z h0kb the-hidden-life-of-thecell shortfilms If this link expires – google "BBC hidden life of the cell"

Vant to stand above the rest when it comes to UCAS? Now is the time to ct. MOOCs are online courses run by nearly all universities. They are short FREE ourses that you take part in. They are usually quite specialist, but aimed at	
the public, not the genius! There are lots of websites that help you find a course, such as edX and Future learn. You can take part in any course, but there are usually start and finish dates. They mostly involve taking part in web chats, watching videos and interactives.	Completing a MOOC will look great on your personal statement and they are dead easy to take part in!

Science: Things to do!

Day 4 of the holidays and boredom has set in?

There are loads of citizen science projects you can take part in either from the comfort of your bedroom, out and about, or when on holiday. Wikipedia does a comprehensive list of all the current projects taking place. Google 'citizen science project'

